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NOSE, EYES AND EARS: HEAD POSE ESTIMATION BY LOCATING
FACIAL KEYPOINTS

AHHOTAIUSA: MoHOKyJIsipHasi OLEHKa MO3bl TOJOBBI TPEOYET U3yUEHUS
MOJIeJI, KOTOpas BIYUCIISIET BHYTPEHHUE YTJIbl Diliepa 1is o036l (pbICKaHbE, TaH-
rak, KpeH) W3 BXOJHOTO M300pakeHWs dernoBedeckoro ymma. O003Ha4YaTh YTIbl
M103bI FOJIOBHI B peajibHOM CUTYyAIUU JIs1 U300paKEHUN Ha PAKTUKE CIO0KHO U Tpe-
OyeT crenrasbHbIX MPOLEeAyp NOATOHKH. JTO MOJYEPKUBAET HEOOXOAUMOCTD MO/~
X0JI0B, KOTOPBIE MOTYT TPEHUPOBATLCA HA JAHHBIX, MOJYYEHHBIX B KOHTPOJIUpPYE-
MOi#1 cpenie, 1 000011aTh 300paKEHUsI B €CTECTBEHHOM cpefie (C pa3IuyHbIM BHEIII-
HUM BHUJIOM U OCBEILIEHUEM JIMLA). ABTOPBI CTaThU MpEIaratoT UCIO0JIb30BaTh MIPE-
CTaBJIEHHE 00Jiee BBICOKOTO YPOBHS, YTOOBI pErpeCCUpPOBATh O3y FOJIOBBI P UC-
N0JIb30BAaHUU apXUTEKTYp IIyOokoro oOydeHus. bojee KOHKPETHO, OHM HCHOJIb-
3yeM KapTbl HEONPEIEIEHHOCTH B BHJE JIBYXMEPHBIX H300paKeHHI TEIIOBON
KapThl MSTKOM JIOKaIU3aluu JJIsl MATH KIFOUEBBIX TOYEK JIMIA, & UMEHHO JIEBOTO
yXa, MpaBoro yxa, JEBOro IJa3a, IpaBoro riaza U HOCa, U MPOIYCKAEM UX 4Yepes
CBEPTOUYHYIO HEHPOHHYIO CETh JUIsl PErPECCHH TO3bl TOJOBBIL. Pe3ynbTaThl OLIEHKH
I103bI TOJIOBBI MTOKA3bIBAKOTCA HA ABYX CJIOKHBIX KOHTPOJBHBIX Mokazareisix BIWI
u AFLW.

Kntroueswvie cnosa: ananus n3o00paxxeHus, OLEHKa 103k, HeBepOaIbHask KOM-

MYHUKalusl.

ABSTRACT: Monocular head pose estimation requires learning a model that
computes the intrinsic Euler angles for pose (yaw, pitch, roll) from an input image
of human face. Annotating ground truth head pose angles for images in the wild 1s
difficult and requires ad-hoc fitting procedures. This highlights the need for ap-
proaches which can train on data captured in controlled environment and generalize
on the images in the wild (with varying appearance and illumination of the face).

The authors of the article propose to use a higher level representation to regress the
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head pose while using deep learning architectures. More specifically, they use the
uncertainty maps in the form of 2D soft localization heatmap images over five facial
key points, namely left ear, right ear, left eye, right eye and nose, and pass them
through a convolutional neural network to regress the head-pose. The authors show
head pose estimation results on two challenging benchmarks BIWI and AFLW.

Key words: Image analysis, pose estimation, non-verbal communication.

Introduction: The ability of humans to comprehend non-verbal communica-
tion by effortlessly estimating the orientation and movements of human head is fas-
cinating. In order to humanize machines by bringing them closer to human-like per-
ception and understanding, accurately estimating the human head orientation using
visual imagery presents an important challenge. Head pose relates to the visual at-
tention and interest of a person, which is crucial for many applications in computer
vision. Estimating head pose has been actively pursued in problems like social event
analysis [1], Human Computer Interaction (HCI) [2], driver assistance systems [3]
etc., which are an important part of present day technologies.

With the availability of well an-notated datasets captured using Kinect sensors
such as BIWI [4], monocular head pose estimation with 3-DOF has seen good im-
provements in recent years. The state-of-the-art method relies on end-to-end convo-
lutional regression networks [5], which takes RGB images as input and learns the
parameters of an inverse regression network using a Mean Squared Error (MSE)
loss. As BIWI [4] is captured in a controlled environment for accurate ground truth
annotation which is dependent on precise 3D reconstruction of face, methods using
RGB input directly for head pose estimation on BIWI [4] fail to generalize on images
in the wild. On the other hand, datasets like AFLW [6] only provide coarse approx-
imation of ground truth angles as annotation of ground truth on images in the wild
is challenging. Hence, an important property for head pose estimation algorithms is
generalization on face images in the wild when trained on precisely annotated da-

tasets like BIWI [4].



While computer vision based pose estimation approaches have focused pre-
dominantly on appearance-based solutions that compute human pose directly from
digital images, there have been methods based on psychophysical experiments.
These consider the human perception of head pose to rely on cues such as deviation
of nose angle and the deviation of the head from bilateral symmetry [7]. Since it is
easier to annotate 2D keypoints directly on images, huge labelled datasets are now
available [8] and have led to development of powerful methods [9] for localizing
keypoints like nose, eyes and ears. We hypothesize that we can learn a head pose
estimation model using only five facial keypoint locations. Such a model implicates
an abstraction over the appearance and illumination dependent image data which is
a hindrance for generalization capability of head pose estimation methods. The ab-
straction limits the dependencies of the model to scale and configuration of a few
keypoint locations.

Our first baseline approach takes as input the keypoint locations and directly
predicts the head-pose using a Multi-Layer Perceptron (MLP). However, we notice
that the facial keypoint locations have inherent uncertainty in their estimation. Hence
we propose a second framework, which first computes the un-certainty maps for the
five points in the form of heatmap images capturing their soft localization (in other
words, the probability distribution of all possible locations of that keypoint). The
five images are then stacked together and provided as input to a Convolutional Neu-
ral Network (CNN) for estimation of head pose angles.

Our baseline approach is to employ a Multi-Layer Perceptron (MLP) which
regresses the 3D head-pose directly using the predicted locations of the five key-
points (detected using [9]). Each of the keypoint is parameterized by its 2D location
and prediction likelihood, resulting in an input vector of 15 dimensions, which is
used to regress a 3D vector representing the yaw, pitch and roll. Undetected key-
points are represented by a vector of zeroes.

MLP-based method is based on the assumption that the locations of five facial
keypoints estimated from the face image are accurate. However, in practice there is

inherent uncertainty in predicting the locations of keypoints such as eyes, ear and



nose, using an optimization based approach [9]. One possible way to account for this
uncertainty in localization is to treat the image locations of the facial keypoints as
latent variables. From a representation perspective, uncertainty maps (heatmap im-

ages) can be used to depict latent variables, which capture the soft localization of 2D
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Fig. 1. Example of a face image, detected keypoints and respective heatmaps of
each keypoint computed using [9].

Keypoint locations. An image-based representation of the facial keypoint locations
facilitates the use of CNN-based approaches for learning the head pose. Uncertainty
maps over locations of keypoints (or joints) in human body or an object skeleton,
present in an image, have been successfully used in previous literature where the
exact locations of the keypoints were noisy or unknown. Zhou [10] use heatmap
images of 2D joint locations to infer 3D human pose using an Expectation Maximi-
zation framework. Wu [11] use heatmaps of 2D skeleton keypoints of an object as
an intermediate representation to recover 3D structure of an object and bridge the
gap between synthetic and real data. Interestingly, both these works [10, 11] use
heatmaps over 2D spatial locations to infer 3D structure/pose. Deriving motivation
from these efforts, we propose an algorithm which takes 2D uncertainty maps over

the facial keypoints as input and regresses the 3D head pose.

Unlike previous efforts [10, 11] that use heatmaps as an intermediate repre-
sentation and do not have ground truth data, we have ground truth pose angles avail-
able. This allows us to directly train a convolutional regression network using
ground truth supervision for head pose estimation. Specifically, we use OpenPose
[9] to compute the uncertainty maps for the five facial keypoint locations as illus-
trated in Figure 1. Each heatmap image is considered as a separate channel and the
channels are stacked together, which generates a 5-channel feature map. This feature

map is used as an input to the CNN, to learn a head pose estimation model. The final



layer gives the values of three pose angles obtained as a result of the convolutional
regression. We use a MSE loss to train the convolutional regression network, which

can be written as follows:

IR
Lmse = §Z(9i —0,)
i=1

where 0; is the vector consisting of the predicted values for intrinsic Euler angles
and 6, is the vector consisting of the values of ground truth angles.

MLP-based Model Our network consists two hidden layers of size 30 neu-
rons each. We set learning rate of 0.00001 and train for 500 epochs using Adam
optimizer with a weight decay of 0.0001 and batch size 64.

CNN-based Model We use a CNN architecture with 3 convolution layers and
2 fully connected layers (we have use same architecture used in Liu[12] but with 5
input channels). Training is run for 1200 epochs with Adam optimizer and set learn-
ing rate of 0.00001. We set the batch size to 32.

All the experiments are run on a single Nvidia GTX 1080Ti GPU.

We use two benchmark datasets to measure the performance of our models
and test them. BIWI Kinect Headpose Dataset [4] contains over 15K samples spread
over 24 sequences, captured in a controlled environment. The range of head pose
angles in the dataset vary from +75¢ for yaw, £60¢ for pitch and £50¢ for roll. AFLW
[6] Annotated Facial Landmarks in the Wild (AFLW) provides a large-scale collec-
tion of annotated face images gathered from the web, exhibiting a large variety in
appearance (e.g., pose, expression, ethnicity, age, gender) as well as general imaging
and environmental conditions. In total about 25K faces are annotated with up to 21
landmarks per image.

Results on BIWI dataset: As BIWI is captured in controlled conditions and
has better ground truth annotations, better performance is achieved on this dataset.
The motivation for designing our frameworks is to train a model on a dataset like
BIWI and use it to generalize to face images in the wild. In order to demonstrate the

ability of our frameworks, we predict the head pose on unseen images taken from



the web. Our results show the presence of a perceptually better sense of pose than a
model learned directly on the RGB images. Quantitative results for the dataset in
terms of Mean Absolute Error (MAE) from ground truth annotations are while the
CNN based approach surpasses the state of the art.

Results on AFLW dataset: Given the large variations in AFLW dataset, most
of the previous methods compute results for head pose estimation on this dataset by
constraining the range of angles, using a subsampled set of images or creating a very

small test set [13, 14]. We do not assume any such constraints and show

Method Yaw | Pitch | Roll | MAE
Liu [23] 6.0 6.1 57 | 594
Ruiz et al. [18] 4.810 | 6.606 | 3.269 | 4.895
Drouard [19] 424 | 543 | 413 | 4.6

DMLIR [8] 312 | 468 | 3.07 | 3.62
MLP with location (Ours) | 3.64 | 442 | 3.19 | 3.75
CNN + Heatmaps (Ours) | 3.46 | 3.49 | 2.74 | 3.23

Table 1. Results on BIWI with 8-fold cross-validation (21 randomly selected vid-
eos for training and the remaining 3 videos for test such that no person appears
both in training and test sets)

the results using a standard five-fold validation process on the entire dataset, where
the samples are randomly divided into train and test sets with 80% samples ending

up in training set (Table 2).

Method Yaw | Pitch | Roll | MAE
View manifolds [24] - - - 17.52
Random Forests [25] - - - 12.26
Pata. and Cang.* [17] 11.04 | 7.15 | 44 | 7.53
MLP + Locations (Ours) | 9.56 | 6.64 | 4.68 | 6.96
CNN + Heatmaps (Ours) | 6.19 | 5.58 | 3.76 | 5.18

Table 2. Results on AFLW dataset with 5-fold cross validation. * : Constrains the
angles to a certain range.

We also perform experiment following testing protocol in [15] (i.e. selecting
1000 images from testing and remaining for training) and present the results in Table

3.

Method Yaw | Pitch | Roll | MAE
Kepler [26] 6.45 | 7.05 | 585|645
Ruiz et al. [18] 6.26 | 5.89 | 3.82|5.324

MLP + Locations (Ours) | 6.02 | 5.84 | 3.56 | 5.14
CNN + Heatmaps (Ours) | 5.22 | 4.43 | 2.53 | 4.06

Table 3. Results on AFLW using testing protocol in [26].




The numbers of other methods in both tables are reported directly from the
associated papers (aligned with corresponding protocol).

The results clearly show that our CNN-based framework achieves the lowest
MAE, significantly improving on the previous state-of-the-art on both the protocols.
Interestingly, the MLP based approach also gives competitive performance as com-
pared to previous work. We believe that the exact locations of the facial keypoints,
as used in case of MLP, makes it prone to overfitting while the heatmaps act as a
regularizer in that sense, giving an edge to CNN based framework. Overall, the ex-
periments provide a strong empirical evidence towards the hypothesis pursued in
this paper.

Conclusion: In this paper, we present a hypothesis that using an intermediate
representation such as locations of five facial keypoints instead of face images can
help achieve better pose estimation and generalization performance. We propose two
frameworks (a baseline approach employing MLP and a CNN over uncertainty
maps) to support our claim. Although, minimal the MLP based approach gives com-
petitive performance and we believe that it will improve with improvement in local-
ization of keypoints. Owing to presence of noise in localization estimates, our CNN-
based approach uses it as an advantage by representing the uncertainty as heatmaps
and regressing the head pose with the heatmaps as input. The CNN-based framework
surpasses state-of-the-art for head pose estimation on two challenging benchmarks
BIWI [4] and AFLW [6].
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